Rapid analysis of hydrogen cyanide in fresh cassava roots using NIRS and machine learning algorithms: Meeting end user demand for low cyanogenic cassava
This study focuses on meeting end-users’ demand for cassava (Manihot escu- lenta Crantz) varieties with low cyanogenic potential (hydrogen cyanide potential [HCN]) by using near-infrared spectrometry (NIRS). This technology provides a fast, accurate, and reliable way to determine sample constituents with minimal sample preparation. The study aims to evaluate the effectiveness of machine learning (ML) algorithms such as logistic regression (LR), support vector machine (SVM), and partial least squares discriminant analysis (PLS-DA) in distinguishing between low and high HCN accessions. Low HCN accessions averagely scored 1–5.9, while high HCN accessions scored 6–9 on a 1–9 categorical…
View more